
Permission Based Anomalous Application Detection

on Android Smart Phone

Htet Htet Win, Zon Nyein Nway

University of Computer Studies, Yangon

htethtetwin99.hh@gmail.com@gmail.com,zonnyeinnway7th@gmail.com

Abstract

Android applications are widely used by

millions of users to perform many different activities.

Android-based smart phone users can get free

applications from Android Application Market. But,

these applications were not certified by legitimate

organizations and they may contain malware

applications that can steal private information from

users. The proposed system develops a permission-

based malware detection to protect the privacy of

android smart phone users. This system monitors

various permissions obtained from android

applications and analyses them by using a statistical

technique called singular value decomposition (SVD)

to estimate the correlations of permissions. The

training phase emphasizes on the malware samples

(approximately 300) downloaded from

https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017. The proposed system

evaluates the risk level (High, Medium, and Low) of

Android applications based on the correlation

patterns of permissions. The system accuracy is 85%

for malware applications and goodware applications.

Keywords: Permissions, Android applications, SVD

(Singular Value Decomposition), Risk level,

Malware, Goodware

1. Introduction

When we learn the future of mobile, we have

found out that there were 2.4 billions of Internet users

at 2013. And there will be 5.4 billions at 2025. As the

Internet users growth around the world, on the other

hand there also increases the people who connect the

Internet via mobile. So, we guess there will be 80%

of Internet users who make Internet connections via

mobile at 2025. Moreover, 50% of transactions will

be made by phone at 2050. When we analyze the

anatomy of attack, we have found out there are a lot

of attacks. They are device attack, network attack or

datacenter attack, etc. Moreover, there are many

different ways to attack. For example, in device

attack, attackers can attack our mobile phone through

browser, phone, sms or applications, etc. Among

them, our system is intended to detect applications

which use unintended permissions. We would like to

inform security issues arising from app stores.

Attackers can download an application from official

app stores and then repackage that application to

third party app stores. And as Android Architecture,

there are four layers. The first layer is application

layer which can interact with end users. And the

second layer is application framework. We can

develop an android application through this layer.

Android is the powerful operating systems

supporting a large number of Application in smart

phones. These applications make life more

comfortable. With the repaid growing of Android

application every day, there are growing threats for

the mobile users by installing more malwares without

ability to detect them before installing the

applications to the user device. Malware name came

from “Malicious Software”, its software designed to

secretly access a system without the owner’s device

knowledge. A key challenge is to identify a suspected

application as anomalous (malware). Therefore, we

propose the system that can detect the particular app

is malicious or not and cancel the installation if the

permissions are unacceptable.

The rest of this paper is organized as follows.

In section 2, Related Works is presented. The

background theory is described in section 3 and

proposes system overview is explained in section 4.

In section 5, analysis and the experimental results are

shown. The conclusion of this system is in section 6.

2. Related Work

Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li,

Witawas Srisa-an and Heng Ye [1] discussed that

Scaling the detection for a large bundle of malware

apps remains a challenging task. When there are too

many attributes of training datasets, decision tree hits

a poor accuracy and the training phase tend to take

248

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

more time and memory. Instead of extracting and

analyzing of all android permissions, develop 3-level

of pruning by mining the permission data to identify

the most significant permissions. This system

achieves over 90% of precision, recall, accuracy, and

F-measure using SVM classifier and reduces 4 to 20

analysis times than using all permissions. The

limitation of this system is that it cannot grantee

advanced obfuscation techniques such as

polymorphic and metamorphic malware.

G.N.Bharathi, T.Anusha, R.S.MeenaKumari

and P.Aprna [2] presented that most of the users

don’t understand the permission information and they

used to ignore these permission information. At the

application installation time, we don’t know the apps

permission risk and apps may be malicious or not.

So, this system assigns a risk score to each app and

displays a summary of that information to users. The

risk analysis based on the total no: of permissions.

The inclusion of risk-score information has

significant positive effects in the selection process

and can also lead to more curiosity about security

related information. The risk calculation is not

intended for a user specified application which can be

a particular application before installing. Scanning

the preinstalled apps are demonstrated as

experimental section.

Zarni Aung, Win Zaw[3] proposed that

android-based smart phone users can get free

applications from Android Application Market. But,

these applications were not certified by legitimate

organizations and they may contain malware

applications that can steal privacy information for

users. This system describes the machine learning

based malware detection system by using k-mean

cluster, decision tree classifier. Both malware and

normal applications are classified by using machine

learning technique. The limitation is that the system

needs to train model with larger dataset to obtain

enough samples of malicious applications. And it

cannot classify the types of malware application. This

system uses a collection of 500 sample android

applications and uses Weka tool to analyze the

proposed framework.

3. Background Theory

3.1. Mobile Security

When we learn the future of mobile, we have

found out that there were 2.4 billions of Internet users

at 2013. And there will be 5.4 billions at 2025. As the

Internet users growth around the world, on the other

hand there also increases the people who connect the

Internet via mobile. So, we guess there will be 80%

of Internet users who make Internet connections via

mobile at 2025. Moreover, 50% of transactions will

be made by phone at 2050.

Figure 1. OWASP Mobile Top Ten Risk

Figure 1 shows the mobile top 10 risks which are

described by OWASP (Open Web Application

Security Project).

When we analyze the anatomy of attack, we

have found out there are a lot of attacks. They are

device attack, network attack or datacenter attack,

etc. Moreover, there are many different ways to

attack. For example, in device attack, attackers can

attack our mobile phone through browser, phone, sms

or applications, etc. Among them, our system is

intended to detect applications which use unintended

permissions (Misconfigured apps can open doors to

attackers by providing unintended permissions).

3.1.1. Security Issues Arising from App

Stores

The malicious applications come into our

mobile devices from App Stores. Attackers can

download an application from official app stores and

then repackage that application to third party app

stores.

Figure 2. Security Issues arising from Mobile

App Store

249

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

3.1.2. Android OS

Android is software environment developed by

Google for mobile devices that includes an operating

system, middleware, and key applications. As

Android Architecture, there are four layers. The first

layer is application layer which can interact with end

users. And the second layer is application framework.

We can develop an android application through this

layer. The other layers are application framework,

libraries and linux kernel.

3.1.3. Malware Detection

Malware detection is a field of study that deals

with the analysis, detection and containment of

malware. The greatest challenges in security tasks

that are still battling the exploration of mobile

communication devices, computer and network

infrastructures, and web technology are Malware

attacks, Malware detection and Malware analysis.

There are three different types of malware

detection techniques.

1. Attack or Invasion Detection: Tries to

detect unauthorized access by outsiders.

2. Signature-based Detection (Misuse

Detection): Tries to detect misuse by insiders.

3. Behavior-based Detection (Anomaly

Detection): Detects the patterns in a given dataset

that do not conform to an established normal

behavior.

3.1.4. Android Permission

The purpose of the permission in android

application is to protect the privacy of an Android

user. Android applications use a lot of permissions

such access the SD card, use the Internet and so on.

Google does a great job of declare what permissions

an app uses before installing, but does not go into full

detail about what exactly those permissions do. When

installing an app from the Google Play Store, display

dialog box pops up and the user has to agree that the

app can do certain things. Every application must

have an Android Manifest File. The manifest file

provides essential information about the app to the

android system.

Figure 3. Sample Android Manifest.xml file

3.2. Singular Value Decomposition (SVD)

The statistical technique, called Singular Value

Decomposition (SVD) is the matrix rank reduction

technique. It aims to identify the statistical

association of permissions. The results of

decomposition of the original matrix are descriptions

of permissions and apps based on the hidden

correlation space derived from SVD. The method

reflects the major associative patterns in the dataset.

Consider the M x N Permission_App matrix W.

If W has rank r <= min(M,N), then W can be

decomposed by singular value decomposition:

 W = USVT (1)

Where:

S is also called the “concept matrix”

U is the “permission-concept similarity matrix”

V is the “app-concept similarity matrix”

M is the number of permissions

N is the number of apps

R is the rank value

3.3. Similarity Measure

Another key factor in the success of the

proposed system is the similarity measure between

testApp and malware apps. There are three simple

and well known similarity measures to calculate the

similarity. They are the Dice, Jaccard and Cosine

Coefficients. Among these three similarity measures,

the system is used Jaccard similarity to measure the

related permissions patterns in testApp and set of

trained malware apps.

3.3.1. Jaccard Similarity Coefficient

The Jaccard index [5], also known as the

Jaccard similarity coefficient (by Paul Jaccard), is a

statistic used for comparing the similarity and

250

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

diversity of sample sets. The Jaccard coefficient

measures similarity between sample sets, and is

defined as the size of the intersection divided by the

size of the union of the sample sets:

Let D = {D1, D2,……Dn) be the collection of

N malware apps. Each malware app Di can be

represented by a corresponding set Si such that Si is a

set of all the permissions contained in Di. Let us

denote that set by Di such that Di = {S1,S2,………..

Sn}.
Some attributes are present in just a few

objects of a data set. As they assume zero values in

most of the cases, they are called asymmetric.

Jaccard Similarity Coefficient measure is used to

handle asymmetric binary attributes as only non-zero

values are relevant for the calculation.

)2(
|}{}{||}{}{|

|}{}{|
,




BABA

BAJaccard

BA
PerPerPerPer

PerPer
S




Where: PerA = permissions from trained dataset

PerB = permissions from user-chosen app

4. Framework of the Proposed System

Since the proposed system is implemented by

using vector space model, preprocessing stages and

indexing are needed. Therefore, query apps and

malware apps can be easily and quickly compared.

The results are shown in decreasing order of

similarity values with the query apps. When we

implement the proposed system, we need to pass the

following three steps.

4.1. Database Collection

To implement the proposed system, the first

thing we should do is to collect the information about

the risky apps as much as we can. We need to

analyze the nature of risky apps. According to the

literature, there are so many ways to analyze different

kinds of apps such as by analyzing signature features,

behavior features or anomaly features and so on.

Among them, we choose to analyze the apps based

on permissions. Because permission is the main gate

to allow the application (which operations must be

done). So, we also need to learn about permissions of

android application.

There are a lot of permissions that are declared

by Google. Moreover, there are also customized

permissions. The specific permission has its own task

such as reading contacts, or sending sms or getting

GPS, etc. Some of them are dangerous. Some of them

are normal. Some of them are nothing meaning etc.

But when analyzing permissions, it isn't enough to

know which permissions are dangerous and which

permissions are normal. One application can use as

much as permissions according to the developer.

And, we cannot conclude an application has high risk

by seeing one of dangerous permission.

So, we need to analyze which correlation

patterns of permissions are usually involved in high

risk application. To get the correlation patterns of

permissions, we choose to apply Singular Value

Decomposition (SVD) technique. To apply SVD

technique, we need to train dataset to get original

matrix (permission-app matrix). For choosing the

training dataset, we have to train malware dataset

since we give the knowledge that how much risk

level has an incoming application. We tried hard to

get malware dataset. That kind of dataset didn’t

download easily as malware based dataset are very

restricted. We requested from many sites by using

university emails.

After following many agreements and sending

many requests to many sites, finally we got the

required dataset from

https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017. Kaggle website describes

the specific analysis results of malware applications

by separating into four folders. These folders are

apkMetaReport, byteCodeReport, virusTotalReport,

and assestReport. apkMetaReport folder contains the

contents of Manifest.xml files. byteCodeReport

folder contains the contents of classes.dex.

virusTotalReport folder contains the reports of

virusTotal service. assestReport folders contains

names of assests and lib contents. So, we choose to

download apkMetaReport. That dataset contains over

4000 json files (one json file for one malware

application). An android app name is identified by its

sha256 hash sum, which is used by file name.

4.2. Preprocessing

We need to preprocess the downloaded dataset

to be ready to use as the trained dataset in our

proposed system. There are two steps for

preprocessing phase: tokenization and removing

Duplicate Permissions.

4.2.1. Tokenization

Computers do not understand the structure of a

natural language document and cannot automatically

251

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

recognize words and sentences. So, humans must

program the computer to identify what constitutes

and individual or distinct word referred to as a token.

Such a program is commonly called a tokenizer or

parser or lexer. Tokenizing is the process of breaking

of stream of text up into words, phrases, symbols or

other meaningful elements.

To store the permissions for each application,

we extract the required permissions from the json

dataset by tokenization. Then we build original

matrix (permission-app matrix).

4.2.2. Removing Duplicate Permissions

Some permission is frequently occurring and

that do not represent any content of the application.

Duplicate permissions are list of permissions that the

developer includes them unintentionally. So, in this

phase, duplicate permissions are removed before

building the original malware vector.

 4.3. Proposed System Design

The proposed system comprises into two

phases. The first one is the training phase. The

training phase is starting from extracting permissions

of each JSON file to performing statistical singular

value decomposition (SVD) approach as follow.

Step 1 Place JSON files under ‘download’ folder of

emulator’s internal storage.

Step 2 For each JSON file, extract Permissions and

do Preprocessing phase. Create a Permission_App

relation (perID and appID)

Step 3 Generate the Boolean permission_app

matrix and save it to database

Step 4 Compute S, V, U metrics (using Singular

Value Decomposition) and reduce the metrics with k

dimension (suppose: k=4).

Step 5 Save S-1 and U metrics to the corresponding

data files

Step 6 Transpose V (malApp vector) and save it to

the corresponding data file

Figure 4. Process Flow Diagram for Training Phase

The second one is the testing phase. That

testing phase also contains two sub-phases. First sub-

phase is finding the permission-correlation pattern of

the user chosen application as follow.

Step 1 Accept a test app.

Get Permission Values of <uses-permission>

Element from Android’s Manifest.xml (by

getRequestedPermissionList() method)

Step 2 Generate testApp vector (q).

Step 3 Calculate queryApp vector by computing qT

U S-1

The second sub-phase is giving message to the

user about the user chosen application’s risk level as

follow.

Step 1 Fetch VT from corresponding data file.

Step 2 Compute the similarity values between

queryApp vector and malApp vectors (VT) and save

them to temporary similarity result array.

Step 3 Choose the highest similarity value (h) from

the similarity result array.

Step 4 If h is greater than or equal to maximum

threshold value (0.8000), show the message “The

application has high risk permissions.” in alert box.

Step 5 Else if h is greater than or equal to minimum

threshold value (0.5847), show the message “The

252

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Figure 5. Process Flow Diagram for queryApp

Vector

application has medium risky permissions.” in alert

box. Otherwise, show the message “The application

has low risk permissions.” in alert box.

Figure 6. Process Flow Diagram for Finding Risk

Level

5. Analysis and Empirical Results

In proposed system, the statistical method

SVD and Jaccard Coefficient similarity are used.

This system can be used as a malware detection

system to decide the incoming app should be

installed or not on Android Smartphone.

Firstly, the user wants to install a specific app.

That is passed to the pre-processing stages. In

database, all significant malware apps are already

pre-processing and calculated the malware related

patterns. The input app is compared to this malware

pattern. Finally, the system displays risky level

according to the similarity values.

5.1. Precision and Recall

Precision and recall are two widely used

measures for evaluating the quality of results in

domains such as Information Retrieval and Statistical

classification. In Equation (3) the precision and recall

for IR system is shown.

 (3)

(4)

Precision can be seen as a measure of

exactness or fidelity, whereas Recall is a measure of

completeness.

5.2. Performance Evaluation

We have over 4000 malware dataset as

described in Section 4.1. But we can’t train all of that

according to phone storage and emulator

performance. Firstly we have to find out how much

dataset can be trained. So, we train data beginning

from 50 dataset. By adding 50 JSON files again and

again to the dataset. Here I’ve found out that

emulator was hang at trained dataset 200 on 4G

RAM. So, we tried to train dataset beginning from

250 dataset on a laptop which has 8G RAM. We took

a lot of time to train that amount of dataset. But we

trained dataset by adding 50 JSON files again and

again. Here, we have found out that 300 dataset is

more suitable on the current situation according to

Emulator performance and mobile phone storage.

At that time, we faced another problem that is

which 300 dataset will be trained among these 4000

malapps. So, we separated our 4000 dataset by 300.

And we trained different 300 datasets on our system

to know which dataset has the more features of

current environment malapp by testing 95 malapps.

Here, we have found out D4 dataset includes the

|}{|

|}{}{|

Retrieved

RetrievedRelevant
precision




|}{|

|}{}{|
Recall

Relevant

RetrievedRelevant 


253

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

more features of the current environment malapps.

So, we choose that D4 dataset to train on our system.

Figure 7. Accuracy Comparison of Different

Trained Dataset

The figure 7 shows Accuracy Comparison of

Different Trained Dataset. We trained all of 300

separated dataset of 4000 malapps. But at that figure,

we just highlight only the appearance dataset.

After getting the best trained dataset, we have

to found out which k value will be the best on our

trained data according to SVD method. So, we

analyze different k value on our trained dataset.

Figure 8. Accuracy Comparison of Different

k value

According to the figure 8, we’ve found out

k=4 is the best value of the others. This figure shows

the overall accuracy of our system at different k

value. But, we highlight just k=2 to k=5 among a lot

of different k value.

In figure 9, the correctness of malware is

100% at k=2. But the correctness of goodware is too

low. At k=3, also like k=2. At k=4, the correctness of

malware decreases a little, but the correctness of

goodware is significantly high. So, the accuracy of

the system also increases significantly than others. At

later k value, the correctness of malware is lower.

Figure 9. Accuracy Comparison of Malware and

Goodware Correctness for Different k Value

So, finally we choose k=4 on the trained

dataset 300 according to our analysis of Figure 9

Accuracy Comparison of Malware and Goodware

Correctness for Different k Value.

When we analyze the accuracy of our

proposed system on 134 applications (96 malwares

and 24 goodwares), our system identifies 83 apps as

malwares and 13 apps as goodwares on 96 malwares.

On the other hand, the proposed system identifies 19

apps as goodwares and 5 apps as malwares on 24

goodwares. So, the overall accuracy of our proposed

system is 85%.

6. Conclusion

Focus of attackers and malware writers has

changed to mobile devices due to the increased

adoption of mobile devices for business and personal

purposes and comparatively lesser security controls.

Therefore, App stores are common target for

attackers to distribute malware and malicious apps.

Our system proposes to detect the risk level for

anomalous Android applications. The malware

dataset is identified using Singular Value

Decomposition (SVD) based approach where a

permission-malapp matrix needs to be developed and

then query-app can be detected from the set of risky

permissions. However, the growing amount and

diversity of Android malware has significantly

weakened the effectiveness of the conventional

defense mechanisms, and thus Android platform

often remains unprotected from new and unknown

malware.

Our system suggests that the implementation is

well suited by finding Jaccard Similarity Values

between existing malwares and the user query apps.

We can conclude that the Jaccard Similarity measures

is well suited for mediate amount of data set and can

effectively helpful in finding similar values between

254

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

user query apps and malwares. So, the system

enables users to search similar risky apps as

efficiently and as fast as possible. Therefore, the

system can save time in finding the risky apps even

we didn’t know which apps are closely related and

can access the system effectively without an internet

connection.

References

[1] “Significant Permission Identification for

Machine Learning Based Android Malware

Detection”, L. Jin, S. Lichao, Y. Qiben, L.

Zhiqiang, S.A. Witawas, Y. Heng, 2017.

[2] “Effective Permission Analysis and Complete

Security for Android Application”, G.N.

Bharathi, T. Anusha, R.S. MeenaKumari, P.

Aprna.

[3] “Permission-Based Android Malware

Detection”, Zarni Aung, Win Zaw, March 2013.

[4] “Anomalous Android Application Detection with

Latent Semantic Indexing”, H. Shahriar, V.

Vlincy, 2016 IEEE 40th Annual Computer

Software and Applications Conference.

[5] “Ethical hacking and counter measures by EC-

Council”.

[6] “Spam SMS Detection on Android Smart

Phone”, Hay Mar Sam, July 2015.

[7] “Information Retrieval for Pharmacy using

location – Based Mobile System”, Myat Su

Aung, December 2016.

[8] “Stock Trend Prediction from Mobile Device

Through Web Services”, Kay Thi Aung,

December 2015.

[9] “SMS Security with Aes Algorithm on Android

OS”, Phyo Su Khin, February 2017.

[10] “Analyzing Terror Attacks using Latent

Semantic Indexing”, I. Toure, A. Gangopadjyay,

2013 IEEE.

[11] “A Survey of Android Malware Characteristics

and Mitigation Techniques”, V. Cooper, H.

Shahriar, and H. Haddad, Proc. Of the 11th

International Conference on Information

Technology: New Generations, IEEE CPS, Las

Vegas, USA, April 2014, pp.327-332.

[12] “Using Latent Semantic Analysis to Identify

Similarities in Source Code to Support Program

Understanding”, A. Marcus and J. Maletic, Proc.

Of 12th IEEE International Conference on Tools

with Artificial Intelligence, November 2000, pp.

46-53.

[13] “Effective Permission Analysis and Complete

Security for Android Application”,

G.N.Bharathi, SSRG International Journal of

Computer Science and Engineering –

(ICCREST’17) – Special Issue – March 2017,

ISSN: 2348 - 8387.

255

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

