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Abstract 

 

Android applications are widely used by 

millions of users to perform many different activities. 

Android-based smart phone users can get free 

applications from Android Application Market. But, 

these applications were not certified by legitimate 

organizations and they may contain malware 

applications that can steal private information from 

users. The proposed system develops a permission-

based malware detection to protect the privacy of 

android smart phone users. This system monitors 

various permissions obtained from android 

applications and analyses them by using a statistical 

technique called singular value decomposition (SVD) 

to estimate the correlations of permissions. The 

training phase emphasizes on the malware samples 

(approximately 300) downloaded from 

https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017. The proposed system 

evaluates the risk level (High, Medium, and Low) of 

Android applications based on the correlation 

patterns of permissions. The system accuracy is 85%     

for malware applications and goodware applications. 

 

Keywords: Permissions, Android applications, SVD 

(Singular Value Decomposition), Risk level, 

Malware, Goodware 

 

1. Introduction 

 

When we learn the future of mobile, we have 

found out that there were 2.4 billions of Internet users 

at 2013. And there will be 5.4 billions at 2025. As the 

Internet users growth around the world, on the other 

hand there also increases the people who connect the 

Internet via mobile. So, we guess there will be 80% 

of Internet users who make Internet connections via 

mobile at 2025. Moreover, 50% of transactions will 

be made by phone at 2050. When we analyze the 

anatomy of attack, we have found out there are a lot 

of attacks. They are device attack, network attack or 

datacenter attack, etc. Moreover, there are many 

different ways to attack. For example, in device 

attack, attackers can attack our mobile phone through 

browser, phone, sms or applications, etc. Among 

them, our system is intended to detect applications 

which use unintended permissions. We would like to 

inform security issues arising from app stores. 

Attackers can download an application from official 

app stores and then repackage that application to 

third party app stores. And as Android Architecture, 

there are four layers. The first layer is application 

layer which can interact with end users. And the 

second layer is application framework. We can 

develop an android application through this layer. 

Android is the powerful operating systems 

supporting a large number of Application in smart 

phones. These applications make life more 

comfortable. With the repaid growing of Android 

application every day, there are growing threats for 

the mobile users by installing more malwares without 

ability to detect them before installing the 

applications to the user device. Malware name came 

from “Malicious Software”, its software designed to 

secretly access a system without the owner’s device 

knowledge. A key challenge is to identify a suspected 

application as anomalous (malware). Therefore, we 

propose the system that can detect the particular app 

is malicious or not and cancel the installation if the 

permissions are unacceptable. 

The rest of this paper is organized as follows. 

In section 2, Related Works is presented. The 

background theory is described in section 3 and 

proposes system overview is explained in section 4. 

In section 5, analysis and the experimental results are 

shown. The conclusion of this system is in section 6. 

 

2. Related Work 

 

Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, 

Witawas Srisa-an and Heng Ye [1] discussed that 

Scaling the detection for a large bundle of malware 

apps remains a challenging task. When there are too 

many attributes of training datasets, decision tree hits 

a poor accuracy and the training phase tend to take 
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more time and memory. Instead of extracting and 

analyzing of all android permissions, develop 3-level 

of pruning by mining the permission data to identify 

the most significant permissions. This system 

achieves over 90% of precision, recall, accuracy, and 

F-measure using SVM classifier and reduces 4 to 20 

analysis times than using all permissions. The 

limitation of this system is that it cannot grantee 

advanced obfuscation techniques such as 

polymorphic and metamorphic malware. 

G.N.Bharathi, T.Anusha, R.S.MeenaKumari 

and P.Aprna [2] presented that most of the users 

don’t understand the permission information and they 

used to ignore these permission information. At the 

application installation time, we don’t know the apps 

permission risk and apps may be malicious or not. 

So, this system assigns a risk score to each app and 

displays a summary of that information to users. The 

risk analysis based on the total no: of permissions. 

The inclusion of risk-score information has 

significant positive effects in the selection process 

and can also lead to more curiosity about security 

related information. The risk calculation is not 

intended for a user specified application which can be 

a particular application before installing. Scanning 

the preinstalled apps are demonstrated as 

experimental section.  

Zarni Aung, Win Zaw[3] proposed that 

android-based smart phone users can get free 

applications from Android Application Market. But, 

these applications were not certified by legitimate 

organizations and they may contain malware 

applications that can steal privacy information for 

users. This system describes the machine learning 

based malware detection system by using k-mean 

cluster, decision tree classifier. Both malware and 

normal applications are classified by using machine 

learning technique. The limitation is that the system 

needs to train model with larger dataset to obtain 

enough samples of malicious applications. And it 

cannot classify the types of malware application. This 

system uses a collection of 500 sample android 

applications and uses Weka tool to analyze the 

proposed framework. 

 

3. Background Theory 

 

3.1. Mobile Security 

 

When we learn the future of mobile, we have 

found out that there were 2.4 billions of Internet users 

at 2013. And there will be 5.4 billions at 2025. As the 

Internet users growth around the world, on the other 

hand there also increases the people who connect the 

Internet via mobile. So, we guess there will be 80% 

of Internet users who make Internet connections via 

mobile at 2025. Moreover, 50% of transactions will 

be made by phone at 2050.  

 

 

Figure 1. OWASP Mobile Top Ten Risk 

Figure 1 shows the mobile top 10 risks which are 

described by OWASP (Open Web Application 

Security Project). 

When we analyze the anatomy of attack, we 

have found out there are a lot of attacks. They are 

device attack, network attack or datacenter attack, 

etc. Moreover, there are many different ways to 

attack. For example, in device attack, attackers can 

attack our mobile phone through browser, phone, sms 

or applications, etc. Among them, our system is 

intended to detect applications which use unintended 

permissions (Misconfigured apps can open doors to 

attackers by providing unintended permissions). 

 

3.1.1. Security Issues Arising from App 

Stores 

 

The malicious applications come into our 

mobile devices from App Stores. Attackers can 

download an application from official app stores and 

then repackage that application to third party app 

stores. 

 
Figure 2. Security Issues arising from Mobile 

App Store 
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3.1.2. Android OS 

 

Android is software environment developed by 

Google for mobile devices that includes an operating 

system, middleware, and key applications. As 

Android Architecture, there are four layers. The first 

layer is application layer which can interact with end 

users. And the second layer is application framework. 

We can develop an android application through this 

layer. The other layers are application framework, 

libraries and linux kernel. 

 

3.1.3. Malware Detection  

  

Malware detection is a field of study that deals 

with the analysis, detection and containment of 

malware. The greatest challenges in security tasks 

that are still battling the exploration of mobile 

communication devices, computer and network 

infrastructures, and web technology are Malware 

attacks, Malware detection and Malware analysis. 

There are three different types of malware 

detection techniques. 

1. Attack or Invasion Detection: Tries to 

detect unauthorized access by outsiders. 

2. Signature-based Detection (Misuse 

Detection): Tries to detect misuse by insiders. 

3. Behavior-based Detection (Anomaly 

Detection): Detects the patterns in a given dataset 

that do not conform to an established normal 

behavior. 

 

3.1.4. Android Permission 

 

The purpose of the permission in android 

application is to protect the privacy of an Android 

user. Android applications use a lot of permissions 

such access the SD card, use the Internet and so on. 

Google does a great job of declare what permissions 

an app uses before installing, but does not go into full 

detail about what exactly those permissions do. When 

installing an app from the Google Play Store, display 

dialog box pops up and the user has to agree that the 

app can do certain things. Every application must 

have an Android Manifest File. The manifest file 

provides essential information about the app to the 

android system.  

 
Figure 3. Sample Android Manifest.xml file 

 

3.2. Singular Value Decomposition (SVD) 

 

The statistical technique, called Singular Value 

Decomposition (SVD) is the matrix rank reduction 

technique. It aims to identify the statistical 

association of permissions. The results of 

decomposition of the original matrix are descriptions 

of permissions and apps based on the hidden 

correlation space derived from SVD. The method 

reflects the major associative patterns in the dataset. 

Consider the M x N Permission_App matrix W. 

If W has rank r <= min(M,N), then W can be 

decomposed by singular value decomposition:  

 

                              W = USVT                            (1) 

Where: 

S is also called the “concept matrix” 

U is the “permission-concept similarity matrix” 

V is the “app-concept similarity matrix” 

M is the number of permissions 

N is the number of apps 

R is the rank value 

 

3.3. Similarity Measure 

 

Another key factor in the success of the 

proposed system is the similarity measure between 

testApp and malware apps. There are three simple 

and well known similarity measures to calculate the 

similarity. They are the Dice, Jaccard and Cosine 

Coefficients. Among these three similarity measures, 

the system is used Jaccard similarity to measure the 

related permissions patterns in testApp and set of 

trained malware apps. 

3.3.1. Jaccard Similarity Coefficient 

 

The Jaccard index [5], also known as the 

Jaccard similarity coefficient (by Paul Jaccard), is a 

statistic used for comparing the similarity and 
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diversity of sample sets. The Jaccard coefficient 

measures similarity between sample sets, and is 

defined as the size of the intersection divided by the 

size of the union of the sample sets:  

Let D = {D1, D2,……Dn) be the collection of 

N malware apps. Each malware app Di can be 

represented by a corresponding set Si such that Si is a 

set of all the permissions contained in Di. Let us 

denote that set by Di such that Di = {S1,S2,……….. 

Sn}.  
Some attributes are present in just a few 

objects of a data set. As they assume zero values in 

most of the cases, they are called asymmetric. 

Jaccard Similarity Coefficient measure is used to 

handle asymmetric binary attributes as only non-zero 

values are relevant for the calculation. 

)2(
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Where:  PerA = permissions from trained dataset 

PerB = permissions from user-chosen app 

 

4. Framework of the Proposed System 

 

Since the proposed system is implemented by 

using vector space model, preprocessing stages and 

indexing are needed. Therefore, query apps and 

malware apps can be easily and quickly compared. 

The results are shown in decreasing order of 

similarity values with the query apps. When we 

implement the proposed system, we need to pass the 

following three steps. 

 

4.1. Database Collection 

 

To implement the proposed system, the first 

thing we should do is to collect the information about 

the risky apps as much as we can. We need to 

analyze the nature of risky apps. According to the 

literature, there are so many ways to analyze different 

kinds of apps such as by analyzing signature features, 

behavior features or anomaly features and so on. 

Among them, we choose to analyze the apps based 

on permissions. Because permission is the main gate 

to allow the application (which operations must be 

done). So, we also need to learn about permissions of 

android application.  

There are a lot of permissions that are declared 

by Google. Moreover, there are also customized 

permissions. The specific permission has its own task 

such as reading contacts, or sending sms or getting 

GPS, etc. Some of them are dangerous. Some of them 

are normal. Some of them are nothing meaning etc. 

But when analyzing permissions, it isn't enough to 

know which permissions are dangerous and which 

permissions are normal. One application can use as 

much as permissions according to the developer.  

And, we cannot conclude an application has high risk 

by seeing one of dangerous permission. 

So, we need to analyze which correlation 

patterns of permissions are usually involved in high 

risk application. To get the correlation patterns of 

permissions, we choose to apply Singular Value 

Decomposition (SVD) technique. To apply SVD 

technique, we need to train dataset to get original 

matrix (permission-app matrix). For choosing the 

training dataset, we have to train malware dataset 

since we give the knowledge that how much risk 

level has an incoming application. We tried hard to 

get malware dataset. That kind of dataset didn’t 

download easily as malware based dataset are very 

restricted. We requested from many sites by using 

university emails.  

After following many agreements and sending 

many requests to many sites, finally we got the 

required dataset from 

https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017. Kaggle website describes 

the specific analysis results of malware applications 

by separating into four folders. These folders are 

apkMetaReport, byteCodeReport, virusTotalReport, 

and assestReport. apkMetaReport folder contains the 

contents of Manifest.xml files. byteCodeReport 

folder contains the contents of classes.dex. 

virusTotalReport folder contains the reports of 

virusTotal service. assestReport folders contains 

names of assests and lib contents. So, we choose to 

download apkMetaReport. That dataset contains over 

4000 json files (one json file for one malware 

application). An android app name is identified by its 

sha256 hash sum, which is used by file name.  

 

4.2. Preprocessing 

 

We need to preprocess the downloaded dataset 

to be ready to use as the trained dataset in our 

proposed system. There are two steps for 

preprocessing phase: tokenization and removing 

Duplicate Permissions. 

 

4.2.1. Tokenization  

Computers do not understand the structure of a 

natural language document and cannot automatically 
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recognize words and sentences. So, humans must 

program the computer to identify what constitutes 

and individual or distinct word referred to as a token. 

Such a program is commonly called a tokenizer or 

parser or lexer. Tokenizing is the process of breaking 

of stream of text up into words, phrases, symbols or 

other meaningful elements.  

To store the permissions for each application, 

we extract the required permissions from the json 

dataset by tokenization. Then we build original 

matrix (permission-app matrix). 

 

4.2.2. Removing Duplicate Permissions 

 

Some permission is frequently occurring and 

that do not represent any content of the application. 

Duplicate permissions are list of permissions that the 

developer includes them unintentionally. So, in this 

phase, duplicate permissions are removed before 

building the original malware vector. 

 

 4.3. Proposed System Design 

 

The proposed system comprises into two 

phases. The first one is the training phase. The 

training phase is starting from extracting permissions 

of each JSON file to performing statistical singular 

value decomposition (SVD) approach as follow. 

Step 1 Place JSON files under ‘download’ folder of 

emulator’s internal storage. 

Step 2 For each JSON file, extract Permissions and 

do Preprocessing phase. Create a Permission_App 

relation (perID and appID) 

Step 3  Generate the Boolean permission_app 

matrix and save it to database 

Step 4 Compute S, V, U metrics (using Singular 

Value Decomposition) and reduce the metrics with k 

dimension (suppose: k=4). 

Step 5 Save S-1 and U metrics to the corresponding 

data files 

Step 6 Transpose V (malApp vector) and save it to 

the corresponding data file 

 
Figure 4. Process Flow Diagram for Training Phase 

The second one is the testing phase. That 

testing phase also contains two sub-phases. First sub-

phase is finding the permission-correlation pattern of 

the user chosen application as follow. 

Step 1 Accept a test app. 

Get Permission Values of <uses-permission>  

Element from Android’s Manifest.xml (by 

getRequestedPermissionList() method)  

Step 2 Generate testApp vector (q).                                   

Step 3 Calculate queryApp vector by computing qT 

U S-1 

The second sub-phase is giving message to the 

user about the user chosen application’s risk level as 

follow. 

Step 1 Fetch VT from corresponding data file. 

Step 2 Compute the similarity values between 

queryApp vector and malApp vectors (VT ) and save 

them to temporary similarity result array. 

Step 3 Choose the highest similarity value (h) from 

the similarity result array. 

Step 4 If h is greater than or equal to maximum 

threshold value (0.8000), show the message “The 

application has high risk permissions.” in alert box. 

Step 5 Else if h is greater than or equal to minimum 

threshold value (0.5847), show the message “The 
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Figure 5. Process Flow Diagram for queryApp                               

Vector 

application has medium risky permissions.” in alert 

box. Otherwise, show the message “The application 

has low risk permissions.” in alert box. 

Figure 6. Process Flow Diagram for Finding Risk 

Level 

5. Analysis and Empirical Results 

 

In proposed system, the statistical method 

SVD and Jaccard Coefficient similarity are used. 

This system can be used as a malware detection 

system to decide the incoming app should be 

installed or not on Android Smartphone. 

Firstly, the user wants to install a specific app. 

That is passed to the pre-processing stages. In 

database, all significant malware apps are already 

pre-processing and calculated the malware related 

patterns. The input app is compared to this malware 

pattern. Finally, the system displays risky level 

according to the similarity values.  

 

5.1. Precision and Recall 

 

Precision and recall are two widely used 

measures for evaluating the quality of results in 

domains such as Information Retrieval and Statistical 

classification. In Equation (3) the precision and recall 

for IR system is shown. 

 

          (3) 

                                                                                                              

(4) 

 

Precision can be seen as a measure of 

exactness or fidelity, whereas Recall is a measure of 

completeness. 

 

5.2. Performance Evaluation 

 

We have over 4000 malware dataset as 

described in Section 4.1. But we can’t train all of that 

according to phone storage and emulator 

performance. Firstly we have to find out how much 

dataset can be trained. So, we train data beginning 

from 50 dataset. By adding 50 JSON files again and 

again to the dataset. Here I’ve found out that 

emulator was hang at trained dataset 200 on 4G 

RAM. So, we tried to train dataset beginning from 

250 dataset on a laptop which has 8G RAM. We took 

a lot of time to train that amount of dataset. But we 

trained dataset by adding 50 JSON files again and 

again. Here, we have found out that 300 dataset is 

more suitable on the current situation according to 

Emulator performance and mobile phone storage.  

At that time, we faced another problem that is 

which 300 dataset will be trained among these 4000 

malapps. So, we separated our 4000 dataset by 300. 

And we trained different 300 datasets on our system 

to know which dataset has the more features of 

current environment malapp by testing 95 malapps. 

Here, we have found out D4 dataset includes the 
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more features of the current environment malapps. 

So, we choose that D4 dataset to train on our system. 

Figure 7. Accuracy Comparison of Different 

Trained Dataset 
 

The figure 7 shows Accuracy Comparison of 

Different Trained Dataset. We trained all of 300 

separated dataset of 4000 malapps. But at that figure, 

we just highlight only the appearance dataset. 

After getting the best trained dataset, we have 

to found out which k value will be the best on our 

trained data according to SVD method. So, we 

analyze different k value on our trained dataset. 

 

Figure 8. Accuracy Comparison of Different 

k value 

 

According to the figure 8, we’ve found out 

k=4 is the best value of the others. This figure shows 

the overall accuracy of our system at different k 

value. But, we highlight just k=2 to k=5 among a lot 

of different k value.   

In figure 9, the correctness of malware is 

100% at k=2. But the correctness of goodware is too 

low. At k=3, also like k=2. At k=4, the correctness of 

malware decreases a little, but the correctness of 

goodware is significantly high. So, the accuracy of 

the system also increases significantly than others. At 

later k value, the correctness of malware is lower. 

 
Figure 9. Accuracy Comparison of Malware and 

Goodware Correctness for Different k Value 

 

So, finally we choose k=4 on the trained 

dataset 300 according to our analysis of Figure 9 

Accuracy Comparison of Malware and Goodware 

Correctness for Different k Value.  

When we analyze the accuracy of our 

proposed system on 134 applications (96 malwares 

and 24 goodwares), our system identifies 83 apps as 

malwares and 13 apps as goodwares on 96 malwares. 

On the other hand, the proposed system identifies 19 

apps as goodwares and 5 apps as malwares on 24 

goodwares. So, the overall accuracy of our proposed 

system is 85%. 

 

6. Conclusion 

Focus of attackers and malware writers has 

changed to mobile devices due to the increased 

adoption of mobile devices for business and personal 

purposes and comparatively lesser security controls. 

Therefore, App stores are common target for 

attackers to distribute malware and malicious apps. 

Our system proposes to detect the risk level for 

anomalous Android applications. The malware 

dataset is identified using Singular Value 

Decomposition (SVD) based approach where a 

permission-malapp matrix needs to be developed and 

then query-app can be detected from the set of risky 

permissions. However, the growing amount and 

diversity of Android malware has significantly 

weakened the effectiveness of the conventional 

defense mechanisms, and thus Android platform 

often remains unprotected from new and unknown 

malware. 

Our system suggests that the implementation is 

well suited by finding Jaccard Similarity Values 

between existing malwares and the user query apps. 

We can conclude that the Jaccard Similarity measures 

is well suited for mediate amount of data set and can 

effectively helpful in finding similar values between 
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user query apps and malwares. So, the system 

enables users to search similar risky apps as 

efficiently and as fast as possible. Therefore, the 

system can save time in finding the risky apps even 

we didn’t know which apps are closely related and 

can access the system effectively without an internet 

connection. 
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